\square

B TECH
(SEM-I) THEORY EXAMINATION 2020-21

ENGINEERING MECHANICS

Time: 3 Hours
Total Marks: 100
Note: Question Paper is divided into three parts, all parts are compulsory. Marks are indicated at each part. Assume if any Data Missing.

Q. No. 1- Attempt any four parts.

[$4 \times 5=20]$
a) State and prove varignon's theorem.
b) If the force F shown in Fig. P-017 is resolved into components parallel to the bars AB and BC , the magnitude of the component parallel to bar BC is 4 kN . What are the magnitudes of F and its component parallel to AB ?

c) The $2225-\mathrm{N}$ block shown in Fig. P-507 is in contact with 45° incline. The coefficient of static friction is 0.25 . Compute the value of the horizontal force P necessary to just prevent motion down the incline.
d) A 1000 N cylinder supported by a horizontal rod AB and a smooth uniform rod CD which weighs 500 N (figure 508). Assuming A B C and D to pin jointed and weight of AB is negligible, Find reaction C and D .

Fig. 508

e) Find the least value of P required to cause the system of blocks shown in Fig. P-511 to have impending motion to the left. The coefficient of friction under each block is 0.20

Q. No. 2- Attempt any two parts.

a) Find the force in each member of the truss in figure T-01.

Figure $\mathbf{T - 0 1}$
b) Draw SFD and BMD for the overhanging beam Fig b.
\square

Fig b

c) Find the expression for Shear Force and Bending Moment, hence draw the SFD and BMD Fig c.
Q. No. 3- Attempt any two parts.
$[10 \times 2=20]$
a) Find the centroid for a triangle and sector of a circle figure 3(a).

Figure 3(a)

Figure 3(b)
b) Find the polar moment of inertia of a semicircle about its centre from which a triangle base 120 mm and height 60 mm is renoved as shown in the figure 3(b).
c) Find the mass moment of indila of a sphere about its centre and mass moment of inertia of a cone about its axis of rotation.
Q. No. 4- Attempt any two (farts.
[10×2=20]
a) Find the tension the string and acceleration of blocks A and B weighing 200 N and 50 N respectively, 6 mected by a string and frictionless and weightless pulley as in fig 4(a)

Figure 4(a)

Figure 4(b)
b) Two equal weight of 3000 N (figure 4 b) are lying on two inclined planes connected by a string passing over a frictionless pulley as shown. Using D'Alembarts principle, find the acceleration of the weights and tension in the string. $\mu=0.2$ for wedge.
c) (i) A fly wheel make 100 rev from a velocity 120 rpm to 160 rpm . Find the acceleration and time taken. Also find the total number of revolution if the fly wheel started from rest.
(ii) Acceleration of a particle is given by $a=10-x$. Particle starts from rest at $x=0 v=0$. Find the position when velocity is zero and the velocity when acceleration is zero.

D ownload all N O T E S and PA PE R S at StudentSuvidha.com

Roll No: \square
Q. No. 5- Attempt any four parts.
[$4 \times 5=20]$
a) State assumptions for Bending. Derive an expression for bending Equation.
b) A simply supported beam, 2 m wide by 4 m high and 12 m long is subjected to a concentrated load of 2000 N at a point 3 m from one of the supports. Determine the maximum fiber stress.
c) A steel propeller shaft transmitting 450 KW at 300 rpm without exceeding a shearing stress of $40 \mathrm{~N} / \mathrm{mm}^{2}$ or twisting through more than 1° per meter. Compute the proper diameter if $\mathrm{G}=$ $80 \mathrm{kN} / \mathrm{mm}^{2}$.
d) Find the elongation for the tapered circular bar with given dimension in figure 5(d) also find the total strain energy.

Figure 5(d)

e) A member ABCD of uniform diameter 200 mm is loaded as shown in figure $5(\mathrm{e})$, find the net change in length if $\mathrm{E}=200 \mathrm{GN} / \mathrm{m}^{2}$.

